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83" Byl (p.m)IY [, (m).kb k] EL(r @)= 3 A sinl, () (- / 2)]x
= m=0 ) 51 n=0
(= 23V Th(p) ke kd] OO 0 (@Y (k) ~Y, (kD k)] (54)

for the TE modes with symmetric EFD relative to Il _<
E =>» B X
the planep=Tt/ 4. 2 (1.9) mz=o m COSI, M )p]

In the formulas (48}(51), we have believed that I, () (KDY, (ke =Yy (K D) Iy, (K] 5(55)
l,(p,m) = Tsin[lz (m)e]cosl, (p)@-y / 2)]dp. Ho(r.@) =Y (f ,kc)i A, sinll, () @~y / 2)]x
n=0

y/2

Xy, (m) (K@Y ) (KeF) =Y, 0y (K@) ) o) (K] 5 (56)
In the same way, the amplitude of tpeth partial 1 (63 Yy (e Lo eyt

mode in the region | (Fig. 3) can be derived frai)( H('pI (r,@)=Y(f ,kc)i B,, cos[, (m)p]x
m=0
83 B,l1(p,m)IY[I,(m),kb,kd] X1, (my (KDY iy (KeP) =Y, my(KD) Iy, ey (K] (B7)
— __m=0
N e @ s VL (P kakd] D where () =2n(n+ 1)/ (- 2); L(m)=2m+1; A

and B,, are unknown amplitude coefficients, (x) ,
E‘Y,(x), J/(¥), Y'(x) are Bessel functions of the first
and the second kind and their derivativiesjs a cutoff

8oo B 1. (p,m)J'Y[l.,(m),kbkd wave number.
_ m;) ml1 (P IV [ (m) ko] (53) The boundary conditions at the interface between

(1= 2y)IY[,(p), ka,kd] the regions | and Il (Fig. 2) are as follows:

for the TE modes with antisymmetric EFD relativ
to the planep=T11/4;

for the TE modes with symmetric EFD relative to  E; (r =d, @0[y/2; (t-y)/2])=
the planegp=Tt/4. =E)(r =d, @O[y/2; (m-y)/ 2]); (58)
Having equated (50) to (52) or (51) to (53) one can ,,u,, _ e _
obtain (33) and (34) received in the previous secti Ho(r=d, Oly/2; (m=v)/2)=
Next we multiply left and right parts of the equati = H('p(r =d, oO[y/2; (m-vy)/2]). (59)
(47) by the system of functiorsn[l, (q)¢], q=0,1,2..

, and integrate the resulting relation at the irdker
[0; y/2]. As a result, we obtain (35), where

vz _ El(r=d, @0[0; y/2]0[(m-y)/ 2; 1/ 2])=0. (60)
2(am) = { sinlz m)elsinl; (@)elde. Substituting (54)—(57) in (58)(60), we obtain

Besides, at the perfectly conducting surfaces of
ridges atr =d and@U[0; y/2]O[(11—V)/ 2; Tt/ 2]:

The further course of solving the problem is the S B cosl. MY M. (m).kbkdl=
same as that described in the previous section. mzzo m €Oz MRVl (M) kb k]
TM modes antisymmetric relative to - sinll. (M(o=v / 213YTL (M. k a.k.d

The TM eigenmodes designations introduced in this eOly/ 2 (T=y) /2] (61)
section coincide with the ones given above foriaé - ' -
B Y kbkd]=
mode and the TE modes. In the regions | and II. (Big mz=o m€OSly MIPRY'I, (M) kd kd]
we represent the fieldg, and H,, in the form of infi-

nite sums of the partial modes with unknown ampli- —%A@ln[ll(n)((p ¥/ 2PY' T (n).kakd],
tudes and cutoff wave .numbersz ea_ch of Whlgh seaisf o0[y/ 2; (m-vy)/2]; (62)
the Maxwell equations in the cylindrical coordinates-

tem and boundary conditions at the magnetic, etectr

walls as well as at the perfectly conducting swefaof

CQRW (see Fig. 2):
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o Using this designation, the relation (67) can be re
Z_: By, cosl, M)pNY[l,(m).kb kd]=0, written by the formula (34).
m=0 Next, we multiply left and right parts of the eqoat

ouI0; y/ 210 (m=y) /2 m/ 2], (63) (63) by the system of functionscos], @] .
where JY(1,%,y)= 3, (X)Y, (¥)=Y, (x)J, (y) ., 0=0,12,.. and integrate the result at the disjunction of
JY'(1L,xy) =3, OY'(Y) =Y, (X)J) (y). intervals[0; y/2]0[(1t-y)/ 2; 1t/ 2]. In the issue, we

Multiplying left and right parts of the equationl{6 obtain

by the system of functionssinfl,(p)(e-y/2)] , o
p=0,1,2,.. and integrating the result at the interval EOBmIZ(q’m)JY[IZ(m)’kcb'kcd]=0’ (68)
[y/2; (mt—-y)/2], at which the system of these func- "
. . . Y
tions is orthogonal, we obtain where l,(q,m) = J' cos|, (n)p]cos, & Jp Jdp+
o0 0
> Bl (p,m)JY[l,(m), kb, kd] = W2
m=0 ) [ cosl, Mmyplcos[, € )pldp.
= AT IV ((p) kakad), (64) "
_ _ Introducing  the  designation F,(q,m,y,z)=
V\_/hence |t. follows, .that th(_e amplltude of the-th = 1,(q.m)JIY[l,(m), y,z] , we can rewrite (68) by the
partial mode in the region | (Fig. 2) is expresasd formula (36). The further way of solving the pramblés
© the same as that described hereinbefore for the TE
4% Bly(p,m)IY[l,(m),kb,kd] eigenmodes.
—_m=0
= . (65) . .
(11=2y)JY [l (p) kea,kd] TM modes symmetric relative to

theplane ¢ =n/2
In the formulas (64), (65), the following desigioati _ .
is assumed In the regions | and Il (Fig. 3), we represent the

fields E, and H, in the form of infinite sums (54)-

(T-y)/2
[,(p,m)= j cos|, Mmyp]sinl, (p)@-y / 2)]dp. (57) of the partial modes with unknown amplituded a
vi2 cutoff wave numbers, each of which satisfies thexMa

In th h litude of h ial well equations in the cylindrical coordinate systam
n t_ € same .Way, t'e amplitude o “FPI partial el as boundary conditions at the two magneticlsval
mode in the region | (Fig. 2) can be obtained f(6®). or at the magnetic and electric walls and at théepty

As aresult, we get conducting  surfaces of  CQRW,  where
w0 ' l,(n) =4nt(n+1)/ (11— 2y), |,(m)=4m+ 2 for the T™M
4% Buly (p.m)3Y'[I,(m),k b,k d] modes with antisymmetric EFD relative to the plane

(66) @=m1/4 (for them this plane is the electric wall) or

_ _ (M =2m2n+1)/ - ), l,(m=4m for the TM
Having equated (65) to (66), one can easily obtain modes with symmetric EFD relative to the plane
w IY[L(m), k b,k d] @=T1/4 (for them this plane is the magnetic wall).

. Buli(p,m){ ML(p). kakd] - The boundary conditions at the interface between
mo P Re Re the regions | and Il (Fig. 3) are as follows:

_ YT, (m), kb, kd], -0

— m=0
A = 20V L (p) kankd]

67
IT(p), ka kd]’ (67) E} (r=d, O[y/2; 1t/ 4])=
— =l — . .

Let us introduce the following designation: B Ez(r =d, oLly/ 2, 1t/ 4]); (69)
F(pmx.y.2)= 1, (pmy by d Holr=c, gBly/z n/ah=

RS N () %, 2 =Hy(r =d, oOly/ 2 7/ 4). (70)
_IYTL(m), y, Z]} . Besides, at the perfectly conducting surface of the

JY'TL(p), % 2] ridge atr =d and @[0; y/ 2] we have:

El(r=d, @0[0; y/2]))=0. (71)
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Having substituted (54)—(57) in (69)—(71), we ob- Next, multiplying left and right parts of the eqoat

tain: (74) by the system of functionscos], @] .
g=0,1,2,.. and integrating the result at the interval
> By cosl, mpNY[l,(m),kb.kd]= [0; y/ 2], we obtain (68), where
m=0 y/2
° I,(0,m) = | cos|, m)p]cos[; € Jp Jdp.
=Y Asinfly(n)(@-y/2)PY[l,(n), ka,kd], 2 g 2 2
n=0 . .
i ) The further way of solving the problem is the same
GUly/ 2; T/ 4]; (72) as that described in the previous section.
> By, cosl, myplY'll,(m), kb kd]= Convergence of cutoff wave number solutions
m_om In this section we carry out the convergence aiglys
=Y Asinfly(n)(@-vy/2)PIY'TI,(n), ka,kd], of cutoff wave number solutions depending on the
n=0 number of partial mode®! limiting the sums in (18),
@0[y/ 2; T/ 4]; (73)  (37). The calculations have been performed forbibté
o CQRW configurations depicted in Fig. 1. As can be
2. Bycosl, mypNY[l,(m),kb kd]=0, seen in this Figure, for both configurations of G®R
m=0 :
o0[0: y/2]. (74) the regions | and Il are bounded by the threegutisf

conducting surfaces of CQRW and by the interface of
o _ _ regions. The region Il is bounded by two magnetic
Multiplying left and right parts of the equation2)7 walls, by four perfectly conducting surfaces of O@R
by the system of functionssinfl,(p)@-Y/2)] , and by two interfaces between the regions. Thesefor
p=0,1,2,.. and integrating the result at the interva@ll formulas remain the same for both configuragion
[y/ 2; T/ 4], at which the system of these functions is FOr the CQRW with ridges on inner cylinder we set
. the ridges angle and dimensions ratios as follows=
orthogonal, we obtain
10°, 30°, 50°,a/b = 0.5,(b—d)/b = 0.1, and for the
CQRW with ridges on outer cylindey = 10°, 30°,
50° b/a = 0.5,(d—b)/a = 0.1. Residual error8 (
d=[k.(M)-k.B0)]/k. 30)x100%) plots for cutoff
wave numbers of the first three TE modes and tise fi
_ _ TM mode of CQRW versus the number of partial
whence it follows that the amplitude of the-th modesM are shown in Fig. 4-6. Herewith residual er-

partial mode in the region | (Fig. 3) can be foasd rors for the first, the second, the third TE moded for
the first TM mode are shown by solid, dashed, dash-

i Bmll( P, m)‘]Y[Iz(m), ka1 kcd] =
m=0

= A "_42\’ IV (p), kakd], (75)

o) dotted and dotted lines respectively. The resuliste
4% Byl (p,m)IY[I,(m),kb,kd] CQRW with ridges on inner cylinder are shown in.Fig
= =0 . (76)  4a-6a, and the ones for the CQRW with ridges on outer

(m=2y)JY[l(p). ka kd] cylinder are depicted in Figh46b. The residual errors

are calculated relative to the cutoff wave numhmys

It is assumed that in the formulas (75), (76) tained atM = 30.
W4 . . .
_ . _ As can be seen in Figures 4-6, the residual efoors
L (p,m) = VL cosl, Mplsink, (P~ / 2)]dp. cutoff wave numbers decrease as the ridges anghe

creases. Having compared Fig—8a with Fig. 40—6b,
. . . . one can see that the residual errors of cutoff weawe-
mode in the region I (Fig. 3) can be obtained i@ o o of the first three TE modes for the CQRW with
expression (73) ridges on outer cylinder are less than the onegher
4i B, 1, (p,m)JIY'[l,(m),k b,k d] QQRW with ridges on inner cyIir_1der for the sameavel
(77) tive \_/alue_ of the gaps between rldges and perfecthy
ducting circular cylinder. For the first TM modeetie

—_m=0
b i kakd] ing er. For the first TV modestie
Having equated (76) to (77), one can easily obtalffS'aua! €errors are almost the same for bot Q

(67) and (34) configurations.

In the same way, the amplitude of tipeth partial
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As one can see in Fig. 4-6, taking into accournid@®? Fig. 4. Cutoff wave numbers residual errors vetsgsnum-
tial modes provides the residual errors of cutofivev ber of partial modes for coaxial quad-ridged wavegs with
numbers of the first three TE modes and the fitgt Tridges: ) on inner conducting circular cylindeh)(on outer
mode less than 0.1 % comparatively with the valfes conducting circular cylinder.
cutoff wave numbers obtained in the case of 30igbart
modes. Consequently, it is enough to use 27 pantdles Oin. %o
for the calculation of the CQRW cutoff wave numbiers 16

. . . . L0
both configurations by the transverse field-maigtigch-

nigue with the residual error less than 0.1%. i;l
Convergence of electric field solutions L0+

Now we analyze solutions convergence of EFD fc).8
the TEM mode and the first TE mode depending on tly ¢ | *
number of partial modeM limiting the sums in (18), (4
(37). The calculations have been performed for bo P
CQRW configurations depicted in Fig. 1 with the eam() 0
dimensions ratios as the ones that were set dtineg
solutions convergence analysis for cutoff wave nersb
and the angley = 30°. The TEM mode’s EFD are (a)

shown in Fig. 7, 8, and EFD of the first TE mode ar _
depicted in Fig. 9, 10. The electric field radiahgo-  Oout: %

nent’s distributionskE, (r =d, ¢ O[0; 1]) computed at 1.6

— 2N°
the interface between the regions |, Il and llle($8g. 1.4 =0
1) are presented in Fig. 7, 9, and the distribgtitor 1.2
the azimuthal onée, (r =d, ¢ J[0; 1) are shown in 1.0
Fig. 8, 10. In Fig. 7-10 the results obtained ziti 10, 0.8
20, 30 partial modes are shown by dotted, dashdd a0.6
solid lines respectively. 04!
8ins %o 02N

0.0 ;om e T SR AT SN o o o e o
10 12 14 16 18 20 22 24 26 28 M

(b)

Fig. 5. Cutoff wave numbers residual errors verbgsnum-
ber of partial modes for coaxial quad-ridged wavegs with
ridges: &) on inner conducting circular cylindeh)(on outer
conducting circular cylinder.
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(b) Fig. 7. TEM mode electric field radial componergtdbution

for coaxial quad-ridged waveguides with ridges: ¢n inner
conducting circular cylinderpj on outer conducting circular
cylinder (parameter is a number of partial moklgs

Fig. 6. Cutoff wave numbers residual errors vertbgsnum-
ber of partial modes for coaxial quad-ridged wavegs with
ridges: &) on inner conducting circular cylindeh)(on outer
conducting circular cylinder. E(p o
0.8
As one can see in Fig. 7-10, the EFD becomes mc (. 6}—{}:
narrow and sharp in the vicinity of the peak valass (4 L
the number of partial modd¥l increases. These sharg ¢ > E\(..“
rises of electric field are caused by the singtyafthe ) o \\\
field’'s behavior at the ridge. The more partial ®ed ) , M
are used in the EFD computing, the more accuraie thf0 4 b
sum approximates this singularity. The field bebaym 0.6
the vicinity of the ridges’ edges and in the gapsueen )
the ridges and circular cylinders of CQRW for botl 0-8
configurations is in good agreement with the bednavi'l%o 0102030405060708 090/
of electric field of the fundamental TE mode oftseal S RS e SR i Bl Sonel
coaxial ridged waveguides [26]. @)
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@) Fig. 8. TEM mode electric field azimuthal compondistri-
bution for coaxial quad-ridged waveguides with gdg@)
on inner conducting circular cylindek)(on outer conducting
circular cylinder (parameter is a number of parti@desM).



