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for the TE modes with symmetric EFD relative to 
the plane / 4φ = π . 

In the formulas (48)─(51), we have believed that 
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In the same way, the amplitude of the p -th partial 
mode in the region I (Fig. 3) can be derived from (46): 
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for the TE modes with antisymmetric EFD relative 
to the plane / 4φ = π ; 
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for the TE modes with symmetric EFD relative to 
the plane / 4φ = π . 

Having equated (50) to (52) or (51) to (53) one can 
obtain (33) and (34) received in the previous section. 

Next we multiply left and right parts of the equation 
(47) by the system of functions 2sin[ ( ) ]l q φ , 0,1,2...q =
, and integrate the resulting relation at the interval 
[0;  / 2]γ . As a result, we obtain (35), where 
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The further course of solving the problem is the 
same as that described in the previous section. 

TM modes antisymmetric relative to 
the plane 2/π=ϕ  

The TM eigenmodes designations introduced in this 
section coincide with the ones given above for the TEM 
mode and the TE modes. In the regions I and II (Fig. 2), 
we represent the fields zE  and Hφ  in the form of infi-

nite sums of the partial modes with unknown ampli-
tudes and cutoff wave numbers, each of which satisfies 
the Maxwell equations in the cylindrical coordinate sys-
tem and boundary conditions at the magnetic, electric 
walls as well as at the perfectly conducting surfaces of 
CQRW (see Fig. 2): 
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where 1( ) 2 ( 1) / ( 2 )l n n= π + π − γ ; 2( ) 2 1l m m= + ; nA  

and mB  are unknown amplitude coefficients, ( )lJ x , 

( )lY x , ( )lJ x′ , ( )lY x′  are Bessel functions of the first 

and the second kind and their derivatives, ck  is a cutoff 
wave number. 

The boundary conditions at the interface between 
the regions I and II (Fig. 2) are as follows: 

 

II ( ,  [ / 2;  ( ) / 2])zE r d= φ∈ γ π − γ =  
I ( ,  [ / 2;  ( ) / 2])zE r d= = φ∈ γ π − γ ;  (58) 

II ( ,  [ / 2;  ( ) / 2])H r dφ = φ∈ γ π − γ =  
I ( ,  [ / 2;  ( ) / 2])H r dφ= = φ∈ γ π − γ . (59) 

 

Besides, at the perfectly conducting surfaces of 
ridges at r d=  and [0;  / 2] [( ) / 2;  / 2]φ∈ γ ∪ π − γ π : 

 

II ( ,  [0;  / 2] [( ) / 2;  / 2]) 0zE r d= φ∈ γ ∪ π − γ π = . (60) 
 

Substituting (54)–(57) in (58)–(60), we obtain 
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where ( , , ) ( ) ( ) ( ) ( )l l l lJY l x y J x Y y Y x J y= − , 

( , , ) ( ) ( ) ( ) ( )l l l lJY l x y J x Y y Y x J y′ ′ ′= − . 
Multiplying left and right parts of the equation (61) 

by the system of functions 1sin[ ( )( / 2)]l p φ − γ , 
0,1,2,...p =  and integrating the result at the interval 

[ / 2;  ( ) / 2]γ π − γ , at which the system of these func-
tions is orthogonal, we obtain 
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whence it follows, that the amplitude of the p -th 
partial mode in the region I (Fig. 2) is expressed as 
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In the formulas (64), (65), the following designation 
is assumed 
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In the same way, the amplitude of the p -th partial 
mode in the region I (Fig. 2) can be obtained from (62). 
As a result, we get 
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Having equated (65) to (66), one can easily obtain 
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Let us introduce the following designation: 
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Using this designation, the relation (67) can be re-
written by the formula (34). 

Next, we multiply left and right parts of the equation 
(63) by the system of functions 2cos[ ( ) ]l q φ , 

0,1,2,...q =  and integrate the result at the disjunction of 
intervals [0;  / 2] [( ) / 2;  / 2]γ ∪ π − γ π . In the issue, we 
obtain 
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Introducing the designation 2( , , , )F q m y z =  

2 2( , ) [ ( ), , ]I q m JY l m y z= , we can rewrite (68) by the 
formula (36). The further way of solving the problem is 
the same as that described hereinbefore for the TE 
eigenmodes. 

TM modes symmetric relative to 
the plane 2/π=ϕ  

In the regions I and II (Fig. 3), we represent the 
fields zE  and Hφ  in the form of infinite sums (54)–

(57) of the partial modes with unknown amplitudes and 
cutoff wave numbers, each of which satisfies the Max-
well equations in the cylindrical coordinate system as 
well as boundary conditions at the two magnetic walls 
or at the magnetic and electric walls and at the perfectly 
conducting surfaces of CQRW, where 

1( ) 4 ( 1) / ( 2 )l n n= π + π − γ , 2( ) 4 2l m m= +  for the TM 
modes with antisymmetric EFD relative to the plane 

/ 4φ = π  (for them this plane is the electric wall) or 

1( ) 2 (2 1) / ( 2 )l n n= π + π − γ , 2( ) 4l m m=  for the TM 
modes with symmetric EFD relative to the plane 

/ 4φ = π  (for them this plane is the magnetic wall). 
The boundary conditions at the interface between 

the regions I and II (Fig. 3) are as follows: 
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Besides, at the perfectly conducting surface of the 
ridge at r d=  and [0;  / 2]φ∈ γ  we have: 
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Having substituted (54)–(57) in (69)–(71), we ob-
tain: 
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Multiplying left and right parts of the equation (72) 

by the system of functions 1sin[ ( )( / 2)]l p φ − γ , 
0,1,2,...p =  and integrating the result at the interval 

[ / 2;  / 4]γ π , at which the system of these functions is 
orthogonal, we obtain 
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whence it follows that the amplitude of the p -th 

partial mode in the region I (Fig. 3) can be found as 
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It is assumed that in the formulas (75), (76) 
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In the same way, the amplitude of the p -th partial 
mode in the region I (Fig. 3) can be obtained from the 
expression (73) 
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Having equated (76) to (77), one can easily obtain 
(67) and (34). 

Next, multiplying left and right parts of the equation 
(74) by the system of functions 2cos[ ( ) ]l q φ , 

0,1,2,...q =  and integrating the result at the interval 
[0;  / 2]γ , we obtain (68), where 
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The further way of solving the problem is the same 
as that described in the previous section. 

Convergence of cutoff wave number solutions 

In this section we carry out the convergence analysis 
of cutoff wave number solutions depending on the 
number of partial modes M  limiting the sums in (18), 
(37). The calculations have been performed for the both 
CQRW configurations depicted in Fig. 1. As can be 
seen in this Figure, for both configurations of CQRW 
the regions I and III are bounded by the three perfectly 
conducting surfaces of CQRW and by the interface of 
regions. The region II is bounded by two magnetic 
walls, by four perfectly conducting surfaces of CQRW 
and by two interfaces between the regions. Therefore, 
all formulas remain the same for both configurations. 

For the CQRW with ridges on inner cylinder we set 
the ridges angle and dimensions ratios as follows:   γ  = 

10°, 30°, 50°, ba /  = 0.5, bdb /)( −  = 0.1, and for the 
CQRW with ridges on outer cylinder: γ  = 10°, 30°, 

50°, ab /  = 0.5, abd /)( −  = 0.1. Residual errors δ  (

%100)30(/)]30()([ ccc ×−=δ kkMk ) plots for cutoff 

wave numbers of the first three TE modes and the first 
TM mode of CQRW versus the number of partial 
modes M  are shown in Fig. 4–6. Herewith residual er-
rors for the first, the second, the third TE modes and for 
the first TM mode are shown by solid, dashed, dash-
dotted and dotted lines respectively. The results for the 
CQRW with ridges on inner cylinder are shown in Fig. 
4а–6a, and the ones for the CQRW with ridges on outer 
cylinder are depicted in Fig. 4b–6b. The residual errors 
are calculated relative to the cutoff wave numbers ob-
tained at M = 30. 

As can be seen in Figures 4–6, the residual errors for 
cutoff wave numbers decrease as the ridges angle γ  in-
creases. Having compared Fig. 4а–6a with Fig. 4b–6b, 
one can see that the residual errors of cutoff wave num-
bers of the first three TE modes for the CQRW with 
ridges on outer cylinder are less than the ones for the 
CQRW with ridges on inner cylinder for the same rela-
tive value of the gaps between ridges and perfectly con-
ducting circular cylinder. For the first TM mode these 
residual errors are almost the same for both CQRW 
configurations. 
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As one can see in Fig. 4–6, taking into account 27 par-
tial modes provides the residual errors of cutoff wave 
numbers of the first three TE modes and the first TM 
mode less than 0.1 % comparatively with the values of 
cutoff wave numbers obtained in the case of 30 partial 
modes. Consequently, it is enough to use 27 partial modes 
for the calculation of the CQRW cutoff wave numbers for 
both configurations by the transverse field-matching tech-
nique with the residual error less than 0.1%. 

Convergence of electric field solutions 

Now we analyze solutions convergence of EFD for 
the TEM mode and the first TE mode depending on the 
number of partial modes M  limiting the sums in (18), 
(37). The calculations have been performed for both 
CQRW configurations depicted in Fig. 1 with the same 
dimensions ratios as the ones that were set during the 
solutions convergence analysis for cutoff wave numbers 
and the angle γ  = 30°. The TEM mode’s EFD are 
shown in Fig. 7, 8, and EFD of the first TE mode are 
depicted in Fig. 9, 10. The electric field radial compo-
nent’s distributions ]) ;0[ ,( π∈ϕ= drE r  computed at 
the interface between the regions I, II and III (see Fig. 
1) are presented in Fig. 7, 9, and the distributions for 
the azimuthal one ]) ;0[ ,( π∈ϕ=ϕ drE  are shown in 

Fig. 8, 10. In Fig. 7–10 the results obtained utilizing 10, 
20, 30 partial modes are shown by dotted, dashed and 
solid lines respectively. 
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(b) 

Fig. 4. Cutoff wave numbers residual errors versus the num-
ber of partial modes for coaxial quad-ridged waveguides with 
ridges: (a) on inner conducting circular cylinder; (b) on outer 
conducting circular cylinder. 

 

(a) 

  

(b) 

Fig. 5. Cutoff wave numbers residual errors versus the num-
ber of partial modes for coaxial quad-ridged waveguides with 
ridges: (a) on inner conducting circular cylinder; (b) on outer 
conducting circular cylinder. 
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(b) 

Fig. 6. Cutoff wave numbers residual errors versus the num-
ber of partial modes for coaxial quad-ridged waveguides with 
ridges: (a) on inner conducting circular cylinder; (b) on outer 
conducting circular cylinder. 

 
As one can see in Fig. 7–10, the EFD becomes more 

narrow and sharp in the vicinity of the peak values as 
the number of partial modes M  increases. These sharp 
rises of electric field are caused by the singularity of the 
field’s behavior at the ridge. The more partial modes 
are used in the EFD computing, the more accurate their 
sum approximates this singularity. The field behavior in 
the vicinity of the ridges’ edges and in the gaps between 
the ridges and circular cylinders of CQRW for both 
configurations is in good agreement with the behavior 
of electric field of the fundamental TE mode of sectoral 
coaxial ridged waveguides [26]. 

 

 

(a) 

 

(b) 
Fig. 7. TEM mode electric field radial component distribution 
for coaxial quad-ridged waveguides with ridges: (a) on inner 
conducting circular cylinder; (b) on outer conducting circular 
cylinder (parameter is a number of partial modes M). 

 

(a) 

 

(b) 

Fig. 8. TEM mode electric field azimuthal component distri-
bution for coaxial quad-ridged waveguides with ridges: (a) 
on inner conducting circular cylinder; (b) on outer conducting 
circular cylinder (parameter is a number of partial modes M). 


